

 stable

 User Guide

	Installation
	Migration Guide: 1.x to 2.x
	Imports and Modules
	Naming Adjustments
	Robustness and strict=False
	Exceptions, Warnings, and Log messages
	Metadata
	Extract Text from a PDF
	Post-Processing in Text Extraction
	Extract Images
	Extract Attachments
	Encryption and Decryption of PDFs
	Merging PDF files
	Cropping and Transforming PDFs
	Transforming several copies of the same page
	Adding a Stamp/Watermark to a PDF
	Reading PDF Annotations
	Adding PDF Annotations
	Adding Viewer Preferences
	Interactions with PDF Forms
	Streaming Data with pypdf
	Reduce PDF File Size
	PDF Version Support
	PDF/A Compliance

API Reference

	The PdfReader Class
	The PdfWriter Class
	The PdfMerger Class
	The PageObject Class
	The Transformation Class
	The DocumentInformation Class
	The XmpInformation Class
	The Destination Class
	The RectangleObject Class
	The Field Class
	The PageRange Class
	The annotations module
	The Fit Class
	The PaperSize Class
	Constants
	Errors
	Generic PDF objects

Developer Guide

	Developer Intro
	The PDF Format
	How pypdf parses PDF files
	How pypdf writes PDF files
	CMaps
	The Deprecation Process
	Documentation
	Testing
	Releasing

About pypdf

	CHANGELOG
	Changelog of PyPDF2 1.X
	Project Governance
	Taking Ownership of pypdf
	History of pypdf
	Contributors
	Scope of pypdf
	pypdf vs X
	Frequently-Asked Questions

 pypdf

 	
	The PdfReader Class
	
 Edit on GitHub

The PdfReader Class

	
class pypdf.PdfReader(stream: Union[str, IO[Any], Path], strict: bool = False, password: Union[None, str, bytes] = None)[source]
	Bases: object

Initialize a PdfReader object.

This operation can take some time, as the PDF stream’s cross-reference
tables are read into memory.

	Parameters
		stream – A File object or an object that supports the standard read
and seek methods similar to a File object. Could also be a
string representing a path to a PDF file.

	strict – Determines whether user should be warned of all
problems and also causes some correctable problems to be fatal.
Defaults to False.

	password – Decrypt PDF file at initialization. If the
password is None, the file will not be decrypted.
Defaults to None

	
property viewer_preferences: Optional[ViewerPreferences]
	Returns the existing ViewerPreferences as an overloaded dictionary.

	
resolved_objects: Dict[Tuple[Any, Any], Optional[PdfObject]]
	Storage of parsed PDF objects.

	
property pdf_header: str
	The first 8 bytes of the file.

This is typically something like '%PDF-1.6' and can be used to
detect if the file is actually a PDF file and which version it is.

	
property metadata: Optional[DocumentInformation]
	Retrieve the PDF file’s document information dictionary, if it exists.

Note that some PDF files use metadata streams instead of docinfo
dictionaries, and these metadata streams will not be accessed by this
function.

	
property xmp_metadata: Optional[XmpInformation]
	XMP (Extensible Metadata Platform) data.

	
property named_destinations: Dict[str, Any]
	A read-only dictionary which maps names to
Destinations

	
get_fields(tree: Optional[TreeObject] = None, retval: Optional[Dict[Any, Any]] = None, fileobj: Optional[Any] = None) → Optional[Dict[str, Any]][source]
	Extract field data if this PDF contains interactive form fields.

The tree and retval parameters are for recursive use.

	Parameters
		tree –

	retval –

	fileobj – A file object (usually a text file) to write
a report to on all interactive form fields found.

	Returns
	A dictionary where each key is a field name, and each
value is a Field object. By
default, the mapping name is used for keys.
None if form data could not be located.

	
get_form_text_fields(full_qualified_name: bool = False) → Dict[str, Any][source]
	Retrieve form fields from the document with textual data.

	Parameters
	full_qualified_name – to get full name

	Returns
	
A dictionary. The key is the name of the form field,
the value is the content of the field.

If the document contains multiple form fields with the same name, the
second and following will get the suffix .2, .3, …

	
property outline: List[Union[Destination, List[Union[Destination, List[Destination]]]]]
	Read-only property for the outline present in the document.

(i.e., a collection of ‘outline items’ which are also known as
‘bookmarks’)

	
property threads: Optional[ArrayObject]
	Read-only property for the list of threads.

See §8.3.2 from PDF 1.7 spec.

It’s an array of dictionaries with “/F” and “/I” properties or
None if there are no articles.

	
get_page_number(page: PageObject) → Optional[int][source]
	Retrieve page number of a given PageObject.

	Parameters
	page – The page to get page number. Should be
an instance of PageObject

	Returns
	The page number or None if page is not found

	
get_destination_page_number(destination: Destination) → Optional[int][source]
	Retrieve page number of a given Destination object.

	Parameters
	destination – The destination to get page number.

	Returns
	The page number or None if page is not found

	
property pages: List[PageObject]
	Read-only property that emulates a list of PageObject objects.

	
property page_labels: List[str]
	A list of labels for the pages in this document.

This property is read-only. The labels are in the order that the pages
appear in the document.

	
property page_layout: Optional[str]
	Get the page layout currently being used.

Valid layout values	/NoLayout
	Layout explicitly not specified

	/SinglePage
	Show one page at a time

	/OneColumn
	Show one column at a time

	/TwoColumnLeft
	Show pages in two columns, odd-numbered pages on the left

	/TwoColumnRight
	Show pages in two columns, odd-numbered pages on the right

	/TwoPageLeft
	Show two pages at a time, odd-numbered pages on the left

	/TwoPageRight
	Show two pages at a time, odd-numbered pages on the right

	
property page_mode: Optional[Literal['/UseNone', '/UseOutlines', '/UseThumbs', '/FullScreen', '/UseOC', '/UseAttachments']]
	Get the page mode currently being used.

Valid mode values	/UseNone
	Do not show outline or thumbnails panels

	/UseOutlines
	Show outline (aka bookmarks) panel

	/UseThumbs
	Show page thumbnails panel

	/FullScreen
	Fullscreen view

	/UseOC
	Show Optional Content Group (OCG) panel

	/UseAttachments
	Show attachments panel

	
get_object(indirect_reference: Union[int, IndirectObject]) → Optional[PdfObject][source]
	

	
read_object_header(stream: IO[Any]) → Tuple[int, int][source]
	

	
cache_get_indirect_object(generation: int, idnum: int) → Optional[PdfObject][source]
	

	
cache_indirect_object(generation: int, idnum: int, obj: Optional[PdfObject]) → Optional[PdfObject][source]
	

	
read(stream: IO[Any]) → None[source]
	

	
decrypt(password: Union[str, bytes]) → PasswordType[source]
	When using an encrypted / secured PDF file with the PDF Standard
encryption handler, this function will allow the file to be decrypted.
It checks the given password against the document’s user password and
owner password, and then stores the resulting decryption key if either
password is correct.

It does not matter which password was matched. Both passwords provide
the correct decryption key that will allow the document to be used with
this library.

	Parameters
	password – The password to match.

	Returns
	An indicator if the document was decrypted and weather it was the
owner password or the user password.

	
decode_permissions(permissions_code: int) → Dict[str, bool][source]
	Take the permissions as an integer, return the allowed access.

	
property user_access_permissions: Optional[UserAccessPermissions]
	Get the user access permissions for encrypted documents. Returns None if not encrypted.

	
property is_encrypted: bool
	Read-only boolean property showing whether this PDF file is encrypted.

Note that this property, if true, will remain true even after the
decrypt() method is called.

	
property xfa: Optional[Dict[str, Any]]
	

	
add_form_topname(name: str) → Optional[DictionaryObject][source]
	Add a top level form that groups all form fields below it.

	Parameters
	name – text string of the “/T” Attribute of the created object

	Returns
	The created object. None means no object was created.

	
rename_form_topname(name: str) → Optional[DictionaryObject][source]
	Rename top level form field that all form fields below it.

	Parameters
	name – text string of the “/T” field of the created object

	Returns
	The modified object. None means no object was modified.

	
property attachments: Mapping[str, List[bytes]]
	

	
class pypdf.PasswordType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]
	Bases: IntEnum

	
NOT_DECRYPTED = 0
	

	
USER_PASSWORD = 1
	

	
OWNER_PASSWORD = 2
	

 Previous
 Next

 © Copyright 2006 - 2023, Mathieu Fenniak and pypdf contributors.
 Revision 75793294.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: stable

 	Versions
	latest
	stable
	4.0.1
	4.0.0
	3.17.4
	3.17.3
	3.17.2
	3.17.1
	3.17.0
	3.16.4
	3.16.3
	3.16.2
	3.16.1
	3.16.0
	3.15.5
	3.15.4
	3.15.3
	3.15.2
	3.15.1
	3.15.0
	3.14.0
	3.13.0
	3.12.2
	3.12.1
	3.12.0
	3.11.1
	3.11.0
	3.10.0
	3.9.1
	3.9.0
	3.8.1
	3.8.0
	3.7.1
	3.7.0
	3.6.0
	3.5.2
	3.5.1
	3.5.0
	3.4.1
	3.4.0
	3.3.0
	3.2.1
	3.2.0
	3.1.0
	3.0.0
	v1.17

 	Downloads
	pdf
	html
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

