

 latest

 User Guide

	Installation
	Migration Guide: 1.x to 2.x
	Imports and Modules
	Naming Adjustments
	Robustness and strict=False
	Exceptions, Warnings, and Log messages
	Metadata
	Extract Text from a PDF
	Post-Processing in Text Extraction
	Extract Images
	Extract Attachments
	Encryption and Decryption of PDFs
	Merging PDF files
	Cropping and Transforming PDFs
	Transforming several copies of the same page
	Adding a Stamp/Watermark to a PDF
	Reading PDF Annotations
	Adding PDF Annotations
	Adding Viewer Preferences
	Interactions with PDF Forms
	Streaming Data with pypdf
	Reduce PDF File Size
	PDF Version Support
	PDF/A Compliance

API Reference

	The PdfReader Class
	The PdfWriter Class
	The PdfMerger Class
	The PageObject Class
	The Transformation Class
	The DocumentInformation Class
	The XmpInformation Class
	The Destination Class
	The RectangleObject Class
	The Field Class
	The PageRange Class
	The annotations module
	The Fit Class
	The PaperSize Class
	Constants
	Errors
	Generic PDF objects

Developer Guide

	Developer Intro
	The PDF Format
	How pypdf parses PDF files
	How pypdf writes PDF files
	CMaps
	The Deprecation Process
	Documentation
	Testing
	Releasing

About pypdf

	CHANGELOG
	Changelog of PyPDF2 1.X
	Project Governance
	Taking Ownership of pypdf
	History of pypdf
	Contributors
	Scope of pypdf
	pypdf vs X
	Frequently-Asked Questions

 pypdf

 	
	The PageObject Class
	
 Edit on GitHub

The PageObject Class

	
class pypdf._page.PageObject(pdf: Union[None, PdfReaderProtocol, PdfWriterProtocol] = None, indirect_reference: Optional[IndirectObject] = None)[source]
	Bases: DictionaryObject

PageObject represents a single page within a PDF file.

Typically these objects will be created by accessing the
pages property of the
PdfReader class, but it is
also possible to create an empty page with the
create_blank_page() static method.

	Parameters
		pdf – PDF file the page belongs to.

	indirect_reference – Stores the original indirect reference to
this object in its source PDF

	
original_page: PageObject
	

	
hash_value_data() → bytes[source]
	

	
property user_unit: float
	A read-only positive number giving the size of user space units.

It is in multiples of 1/72 inch. Hence a value of 1 means a user
space unit is 1/72 inch, and a value of 3 means that a user
space unit is 3/72 inch.

	
static create_blank_page(pdf: Union[None, PdfReaderProtocol, PdfWriterProtocol] = None, width: Optional[Union[float, Decimal]] = None, height: Optional[Union[float, Decimal]] = None) → PageObject[source]
	Return a new blank page.

If width or height is None, try to get the page size
from the last page of pdf.

	Parameters
		pdf – PDF file the page belongs to

	width – The width of the new page expressed in default user
space units.

	height – The height of the new page expressed in default user
space units.

	Returns
	The new blank page

	Raises
	PageSizeNotDefinedError – if pdf is None or contains
 no page

	
property images: List[ImageFile]
	Read-only property emulating a list of images on a page.

Get a list of all images on the page. The key can be:
- A string (for the top object)
- A tuple (for images within XObject forms)
- An integer

Examples

reader.pages[0].images[0] # return fist image
reader.pages[0].images[‘/I0’] # return image ‘/I0’
return image ‘/Image1’ within ‘/TP1’ Xobject/Form:
reader.pages[0].images[‘/TP1’,’/Image1’]
for img in reader.pages[0].images: # loop within all objects

images.keys() and images.items() can be used.

The ImageFile has the following properties:

.name : name of the object
.data : bytes of the object
.image : PIL Image Object
.indirect_reference : object reference

	and the following methods:
		.replace(new_image: PIL.Image.Image, **kwargs) :
	replace the image in the pdf with the new image
applying the saving parameters indicated (such as quality)

Example usage:

reader.pages[0].images[0]=replace(Image.open(“new_image.jpg”, quality = 20)

Inline images are extracted and named ~0~, ~1~, …, with the
indirect_reference set to None.

	
property rotation: int
	The VISUAL rotation of the page.

This number has to be a multiple of 90 degrees: 0, 90, 180, or 270 are
valid values. This property does not affect /Contents.

	
transfer_rotation_to_content() → None[source]
	Apply the rotation of the page to the content and the media/crop/…
boxes.

It’s recommended to apply this function before page merging.

	
rotate(angle: int) → PageObject[source]
	Rotate a page clockwise by increments of 90 degrees.

	Parameters
	angle – Angle to rotate the page. Must be an increment of 90 deg.

	Returns
	The rotated PageObject

	
get_contents() → Optional[ContentStream][source]
	Access the page contents.

	Returns
	The /Contents object, or None if it doesn’t exist.
/Contents is optional, as described in PDF Reference 7.7.3.3

	
replace_contents(content: Union[None, ContentStream, EncodedStreamObject, ArrayObject]) → None[source]
	Replace the page contents with the new content and nullify old objects
:param content: new content. if None delete the content field.

	
merge_page(page2: PageObject, expand: bool = False, over: bool = True) → None[source]
	Merge the content streams of two pages into one.

Resource references
(i.e. fonts) are maintained from both pages. The mediabox/cropbox/etc
of this page are not altered. The parameter page’s content stream will
be added to the end of this page’s content stream, meaning that it will
be drawn after, or “on top” of this page.

	Parameters
		page2 – The page to be merged into this one. Should be
an instance of PageObject.

	over – set the page2 content over page1 if True(default) else under

	expand – If true, the current page dimensions will be
expanded to accommodate the dimensions of the page to be merged.

	
merge_transformed_page(page2: PageObject, ctm: Union[Tuple[float, float, float, float, float, float], Transformation], over: bool = True, expand: bool = False) → None[source]
	merge_transformed_page is similar to merge_page, but a transformation
matrix is applied to the merged stream.

	Parameters
		page2 – The page to be merged into this one.

	ctm – a 6-element tuple containing the operands of the
transformation matrix

	over – set the page2 content over page1 if True(default) else under

	expand – Whether the page should be expanded to fit the dimensions
of the page to be merged.

	
merge_scaled_page(page2: PageObject, scale: float, over: bool = True, expand: bool = False) → None[source]
	merge_scaled_page is similar to merge_page, but the stream to be merged
is scaled by applying a transformation matrix.

	Parameters
		page2 – The page to be merged into this one.

	scale – The scaling factor

	over – set the page2 content over page1 if True(default) else under

	expand – Whether the page should be expanded to fit the
dimensions of the page to be merged.

	
merge_rotated_page(page2: PageObject, rotation: float, over: bool = True, expand: bool = False) → None[source]
	merge_rotated_page is similar to merge_page, but the stream to be merged
is rotated by applying a transformation matrix.

	Parameters
		page2 – The page to be merged into this one.

	rotation – The angle of the rotation, in degrees

	over – set the page2 content over page1 if True(default) else under

	expand – Whether the page should be expanded to fit the
dimensions of the page to be merged.

	
merge_translated_page(page2: PageObject, tx: float, ty: float, over: bool = True, expand: bool = False) → None[source]
	mergeTranslatedPage is similar to merge_page, but the stream to be
merged is translated by applying a transformation matrix.

	Parameters
		page2 – the page to be merged into this one.

	tx – The translation on X axis

	ty – The translation on Y axis

	over – set the page2 content over page1 if True(default) else under

	expand – Whether the page should be expanded to fit the
dimensions of the page to be merged.

	
add_transformation(ctm: Union[Transformation, Tuple[float, float, float, float, float, float]], expand: bool = False) → None[source]
	Apply a transformation matrix to the page.

	Parameters
	ctm – A 6-element tuple containing the operands of the
transformation matrix. Alternatively, a
Transformation
object can be passed.

See Cropping and Transforming PDFs.

	
scale(sx: float, sy: float) → None[source]
	Scale a page by the given factors by applying a transformation matrix
to its content and updating the page size.

This updates the mediabox, the cropbox, and the contents
of the page.

	Parameters
		sx – The scaling factor on horizontal axis.

	sy – The scaling factor on vertical axis.

	
scale_by(factor: float) → None[source]
	Scale a page by the given factor by applying a transformation matrix to
its content and updating the page size.

	Parameters
	factor – The scaling factor (for both X and Y axis).

	
scale_to(width: float, height: float) → None[source]
	Scale a page to the specified dimensions by applying a transformation
matrix to its content and updating the page size.

	Parameters
		width – The new width.

	height – The new height.

	
compress_content_streams(level: int = - 1) → None[source]
	Compress the size of this page by joining all content streams and
applying a FlateDecode filter.

However, it is possible that this function will perform no action if
content stream compression becomes “automatic”.

	
property page_number: Optional[int]
	Read-only property which return the page number with the pdf file.

	Returns
	int – page number ; None if the page is not attached to a pdf

	
extract_text(*args: Any, orientations: Union[int, Tuple[int, ...]] = (0, 90, 180, 270), space_width: float = 200.0, visitor_operand_before: Optional[Callable[[Any, Any, Any, Any], None]] = None, visitor_operand_after: Optional[Callable[[Any, Any, Any, Any], None]] = None, visitor_text: Optional[Callable[[Any, Any, Any, Any, Any], None]] = None, extraction_mode: Literal['plain', 'layout'] = 'plain', **kwargs: Any) → str[source]
	Locate all text drawing commands, in the order they are provided in the
content stream, and extract the text.

This works well for some PDF files, but poorly for others, depending on
the generator used. This will be refined in the future.

Do not rely on the order of text coming out of this function, as it
will change if this function is made more sophisticated.

Arabic, Hebrew,… are extracted in the good order.
If required an custom RTL range of characters can be defined;
see function set_custom_rtl

Additionally you can provide visitor-methods to get informed on all
operations and all text-objects.
For example in some PDF files this can be useful to parse tables.

	Parameters
		orientations – list of orientations text_extraction will look for
default = (0, 90, 180, 270)
note: currently only 0(Up),90(turned Left), 180(upside Down),
270 (turned Right)

	space_width – force default space width
if not extracted from font (default: 200)

	visitor_operand_before – function to be called before processing an operation.
It has four arguments: operator, operand-arguments,
current transformation matrix and text matrix.

	visitor_operand_after – function to be called after processing an operation.
It has four arguments: operator, operand-arguments,
current transformation matrix and text matrix.

	visitor_text – function to be called when extracting some text at some position.
It has five arguments: text, current transformation matrix,
text matrix, font-dictionary and font-size.
The font-dictionary may be None in case of unknown fonts.
If not None it may e.g. contain key “/BaseFont” with value “/Arial,Bold”.

	extraction_mode (Literal["plain", "layout"]) – “plain” for legacy functionality,
“layout” for experimental layout mode functionality.
NOTE: orientations, space_width, and visitor_* parameters are NOT respected
in “layout” mode.

	KwArgs:
		layout_mode_space_vertically (bool): include blank lines inferred from
	y distance + font height. Defaults to True.

	layout_mode_scale_weight (float): multiplier for string length when calculating
	weighted average character width. Defaults to 1.25.

	layout_mode_strip_rotated (bool): layout mode does not support rotated text.
	Set to False to include rotated text anyway. If rotated text is discovered,
layout will be degraded and a warning will result. Defaults to True.

	layout_mode_debug_path (Path | None): if supplied, must target a directory.
	creates the following files with debug information for layout mode
functions if supplied:

	fonts.json: output of self._layout_mode_fonts

	tjs.json: individual text render ops with corresponding transform matrices

	bts.json: text render ops left justified and grouped by BT/ET operators

	bt_groups.json: BT/ET operations grouped by rendered y-coord (aka lines)

	Returns
	The extracted text

	
extract_xform_text(xform: EncodedStreamObject, orientations: Tuple[int, ...] = (0, 90, 270, 360), space_width: float = 200.0, visitor_operand_before: Optional[Callable[[Any, Any, Any, Any], None]] = None, visitor_operand_after: Optional[Callable[[Any, Any, Any, Any], None]] = None, visitor_text: Optional[Callable[[Any, Any, Any, Any, Any], None]] = None) → str[source]
	Extract text from an XObject.

	Parameters
		xform –

	orientations –

	space_width – force default space width (if not extracted from font (default 200)

	visitor_operand_before –

	visitor_operand_after –

	visitor_text –

	Returns
	The extracted text

	
property mediabox
	A RectangleObject, expressed in
default user space units, defining the boundaries of the physical medium on
which the page is intended to be displayed or printed.

	
property cropbox
	A RectangleObject, expressed in
default user space units, defining the visible region of default user
space.

When the page is displayed or printed, its contents are to be clipped
(cropped) to this rectangle and then imposed on the output medium in some
implementation-defined manner. Default value: same as
mediabox.

	
property bleedbox
	A RectangleObject, expressed in
default user space units, defining the region to which the contents of the
page should be clipped when output in a production environment.

	
property trimbox
	A RectangleObject, expressed in
default user space units, defining the intended dimensions of the finished
page after trimming.

	
property artbox
	A RectangleObject, expressed in
default user space units, defining the extent of the page’s meaningful
content as intended by the page’s creator.

	
property annotations: Optional[ArrayObject]
	

	
class pypdf._utils.ImageFile(name: str, data: bytes, image: Optional[Any] = None, indirect_reference: Optional[IndirectObject] = None)[source]
	Bases: File

	
image: Optional[Any] = None
	

	
indirect_reference: Optional[IndirectObject] = None
	

	
replace(new_image: Any, **kwargs: Any) → None[source]
	Replace the Image with a new PIL image.

	Parameters
		new_image (Image) – The new PIL image to replace the existing image.

	**kwargs – Additional keyword arguments to pass to Image.Image.save().

	Raises
		TypeError – If the image is inline or in a PdfReader.

	TypeError – If the image does not belong to a PdfWriter.

	TypeError – If new_image is not a PIL Image.

Note

This method replaces the existing image with a new image.
It is not allowed for inline images or images within a PdfReader.
The kwargs parameter allows passing additional parameters
to Image.Image.save(), such as quality.

	
class pypdf._utils.File(name: str, data: bytes, image: Optional[Any] = None, indirect_reference: Optional[IndirectObject] = None)[source]
	Bases: object

	
name: str
	

	
data: bytes
	

	
image: Optional[Any] = None
	

	
indirect_reference: Optional[IndirectObject] = None
	

 Previous
 Next

 © Copyright 2006 - 2023, Mathieu Fenniak and pypdf contributors.
 Revision 75793294.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	4.0.1
	4.0.0
	3.17.4
	3.17.3
	3.17.2
	3.17.1
	3.17.0
	3.16.4
	3.16.3
	3.16.2
	3.16.1
	3.16.0
	3.15.5
	3.15.4
	3.15.3
	3.15.2
	3.15.1
	3.15.0
	3.14.0
	3.13.0
	3.12.2
	3.12.1
	3.12.0
	3.11.1
	3.11.0
	3.10.0
	3.9.1
	3.9.0
	3.8.1
	3.8.0
	3.7.1
	3.7.0
	3.6.0
	3.5.2
	3.5.1
	3.5.0
	3.4.1
	3.4.0
	3.3.0
	3.2.1
	3.2.0
	3.1.0
	3.0.0
	v1.17

 	Downloads
	pdf
	html
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

