

 latest

 User Guide

	Installation
	Migration Guide: 1.x to 2.x
	Imports and Modules
	Naming Adjustments
	Robustness and strict=False
	Exceptions, Warnings, and Log messages
	Metadata
	Extract Text from a PDF
	Post-Processing in Text Extraction
	Extract Images
	Extract Attachments
	Encryption and Decryption of PDFs
	Merging PDF files
	Cropping and Transforming PDFs
	Transforming several copies of the same page
	Adding a Stamp/Watermark to a PDF
	Reading PDF Annotations
	Adding PDF Annotations
	Adding Viewer Preferences
	Interactions with PDF Forms	Reading form fields
	Filling out forms
	A note about form fields and annotations

	Streaming Data with pypdf
	Reduce PDF File Size
	PDF Version Support
	PDF/A Compliance

API Reference

	The PdfReader Class
	The PdfWriter Class
	The PdfMerger Class
	The PageObject Class
	The Transformation Class
	The DocumentInformation Class
	The XmpInformation Class
	The Destination Class
	The RectangleObject Class
	The Field Class
	The PageRange Class
	The annotations module
	The Fit Class
	The PaperSize Class
	Constants
	Errors
	Generic PDF objects

Developer Guide

	Developer Intro
	The PDF Format
	How pypdf parses PDF files
	How pypdf writes PDF files
	CMaps
	The Deprecation Process
	Documentation
	Testing
	Releasing

About pypdf

	CHANGELOG
	Changelog of PyPDF2 1.X
	Project Governance
	Taking Ownership of pypdf
	History of pypdf
	Contributors
	Scope of pypdf
	pypdf vs X
	Frequently-Asked Questions

 pypdf

 	
	Interactions with PDF Forms
	
 Edit on GitHub

Interactions with PDF Forms

Reading form fields

from pypdf import PdfReader

reader = PdfReader("form.pdf")
fields = reader.get_form_text_fields()
fields == {"key": "value", "key2": "value2"}

You can also get all fields:
fields = reader.get_fields()

Filling out forms

from pypdf import PdfReader, PdfWriter

reader = PdfReader("form.pdf")
writer = PdfWriter()

page = reader.pages[0]
fields = reader.get_fields()

writer.append(reader)

writer.update_page_form_field_values(
 writer.pages[0],
 {"fieldname": "some filled in text"},
 auto_regenerate=False,
)

write "output" to pypdf-output.pdf
with open("filled-out.pdf", "wb") as output_stream:
 writer.write(output_stream)

Generally speaking, you will always want to use auto_regenerate=False. The
parameter is True by default for legacy compatibility, but this flags the PDF
Viewer to recompute the field’s rendering, and may trigger a “save changes”
dialog for users who open the generated PDF.

A note about form fields and annotations

The PDF form stores form fields as annotations with the subtype “\Widget”. This means that the following two blocks of code will give fairly similar results:

from pypdf import PdfReader

reader = PdfReader("form.pdf")
fields = reader.get_fields()

from pypdf import PdfReader
from pypdf.constants import AnnotationDictionaryAttributes

reader = PdfReader("form.pdf")
fields = []
for page in reader.pages:
 for annot in page.annotations:
 annot = annot.get_object()
 if annot[AnnotationDictionaryAttributes.Subtype] == "/Widget":
 fields.append(annot)

However, while similar, there are some very important differences between the two above blocks of code. Most importantly, the first block will return a list of Field objects, where as the second will return more generic dictionary-like objects. The objects lists will mostly reference the same object in the underlying PDF, meaning you’ll find that obj_taken_fom_first_list.indirect_reference == obj_taken_from _second_list.indirect_reference. Field objects are generally more ergonomic, as the exposed data can be access via clearly named properties. However, the more generic dictionary-like objects will contain data that the Field object does not expose, such as the Rect (the widget’s position on the page). So, which to use will depend on your use case.

However, it’s also important to note that the two lists do not always refer to the same underlying PDF objects. For example, if the form contains radio buttons, you will find that reader.get_fields() will get the parent object (the group of radio buttons) whereas page.annotations will return all the child objects (the individual radio buttons).

 Previous
 Next

 © Copyright 2006 - 2023, Mathieu Fenniak and pypdf contributors.
 Revision 75793294.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	4.0.1
	4.0.0
	3.17.4
	3.17.3
	3.17.2
	3.17.1
	3.17.0
	3.16.4
	3.16.3
	3.16.2
	3.16.1
	3.16.0
	3.15.5
	3.15.4
	3.15.3
	3.15.2
	3.15.1
	3.15.0
	3.14.0
	3.13.0
	3.12.2
	3.12.1
	3.12.0
	3.11.1
	3.11.0
	3.10.0
	3.9.1
	3.9.0
	3.8.1
	3.8.0
	3.7.1
	3.7.0
	3.6.0
	3.5.2
	3.5.1
	3.5.0
	3.4.1
	3.4.0
	3.3.0
	3.2.1
	3.2.0
	3.1.0
	3.0.0
	v1.17

 	Downloads
	pdf
	html
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

